Suppose that we know the stress state of the soil on a particular plane, and we wish to determine the stress state on a different, rotated plane. This problem is equivalent to a transformation of the coordinate system. The components of the Cauchy stress tensor in the rotated coordinate space, \(\sigma_{ij}^{'}\), can be determined from the stress components in the reference state, \(\sigma_{ij}\), using the rotation matrix \(a\) with components \(a_{ij}\). Note that in soil mechanics, we often represent the shear stress components (i.e., the off-diagonal elements of the stress tensor) as \(\tau_{ij}\) instead of \(\sigma_{ij}\). Furthermore, the prime in \(\sigma'\) usually denotes effective stress, but is used here to denote stresses in a rotated coordinate system.
$$\sigma' = a \sigma a^T$$In matrix form:
\[\left[ \begin{matrix} \sigma _{11}^{'} & \sigma _{12}^{'} & \sigma _{13}^{'} \\ \sigma _{21}^{'} & \sigma _{22}^{'} & \sigma _{23}^{'} \\ \sigma _{31}^{'} & \sigma _{32}^{'} & \sigma _{33}^{'} \\ \end{matrix} \right]=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right]\left[ \begin{matrix} \sigma _{11}^{{}} & \sigma _{12}^{{}} & \sigma _{13}^{{}} \\ \sigma _{21}^{{}} & \sigma _{22}^{{}} & \sigma _{23}^{{}} \\ \sigma _{31}^{{}} & \sigma _{32}^{{}} & \sigma _{33}^{{}} \\ \end{matrix} \right]\left[ \begin{matrix} {{a}_{11}} & {{a}_{21}} & {{a}_{31}} \\ {{a}_{12}} & {{a}_{22}} & {{a}_{32}} \\ {{a}_{13}} & {{a}_{23}} & {{a}_{33}} \\ \end{matrix} \right]\]Figure 2.1.1. Stresses in a reference coordinate system (axes \(x_1\), \(x_2\), \(x_3\)), and rotated coordinate system (axes \(x_1'\), \(x_2'\), \(x_3'\)). https://upload.wikimedia.org/wikipedia/commons/thumb/7/76/Stress_transformation_3D.svg/2000px-Stress_transformation_3D.svg.png
Note: The \(a\) matrix must be orthogonal (i.e., the axes in the rotated coordinate system must form 90 degree angles with each other)
2 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
In soil mechanics, we often simplify three-dimensional stress conditions to two dimensions. The Mohr Circle is a very common tool used to interpret soil stress states, and it is inherently a two-dimensional representation of stresses. We should therefore consider rotation of stresses in two dimensions. Figure 2.1.2 defines the terms of the rotation tensor, \(a_{ij}\), in a manner that is consistent with the three-dimensional procedure in Figure 1.
Figure 2.1.2. Two dimensional coordinate system rotation (note rotation is about the \(x_3\) axis by angle \(\gamma\)).
The rotated stress state can therefore be defined as follows: \[\left[ \begin{matrix} \sigma _{11}^{'} & \sigma _{12}^{'} \\ \sigma _{21}^{'} & \sigma _{22}^{'} \\ \end{matrix} \right]=\left[ \begin{matrix} \cos (\gamma ) & -\sin (\gamma ) \\ \sin (\gamma ) & \cos (\gamma ) \\ \end{matrix} \right]\left[ \begin{matrix} {{\sigma }_{11}} & {{\sigma }_{12}} \\ {{\sigma }_{21}} & {{\sigma }_{22}} \\ \end{matrix} \right]\left[ \begin{matrix} \cos (\gamma ) & \sin (\gamma ) \\ -\sin (\gamma ) & \cos (\gamma ) \\ \end{matrix} \right]\]
Expanding out the matrix algebra results in the following expressions for the rotated stresses: \[\begin{align} & \sigma _{11}^{'}={{\sigma }_{11}}-{{\sigma }_{12}}\sin (2\gamma )-{{\sin }^{2}}(\gamma )\left( {{\sigma }_{11}}-{{\sigma }_{22}} \right) \\ & \sigma _{22}^{'}={{\sigma }_{22}}+{{\sigma }_{12}}\sin (2\gamma )+{{\sin }^{2}}(\gamma )\left( {{\sigma }_{11}}-{{\sigma }_{22}} \right) \\ & \sigma _{12}^{'}={{\sigma }_{12}}\cos (2\gamma )+\frac{\sin (2\gamma )}{2}\left( {{\sigma }_{11}}-{{\sigma }_{22}} \right) \\ \end{align}\]
2 | 0 |
0 | 1 |
Figure 2.1.3a. Graphical solution of stresses on inclined plane: Step 1.
Figure 2.1.3b. Graphical solution of stresses on inclined plane: Step 2.
Figure 2.1.3c. Graphical solution of stresses on inclined plane: Step 3.
Figure 2.1.3d. Graphical solution of stresses on inclined plane: Step 4.
Figure 2.1.3e. Graphical solution of stresses on inclined plane: Step 5.
Figure 2.1.4. Mohr's circle for plane stress and plane strain conditions (Pole approach).
https://upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Mohr_Circle_plane_stress_%28pole%29.svg/757px-Mohr_Circle_plane_stress_%28pole%29.svg.png