Warning: include_once(../ScottsNavbar.php): Failed to open stream: No such file or directory in /home/sjbrande/public_html/sjbrandenberg/SoilMechanicsNotes/Section4.2.php on line 24

Warning: include_once(): Failed opening '../ScottsNavbar.php' for inclusion (include_path='.:/opt/cpanel/ea-php82/root/usr/share/pear') in /home/sjbrande/public_html/sjbrandenberg/SoilMechanicsNotes/Section4.2.php on line 24

4.2 Stress At A Point - 3D

4.2.1 Stresses on Rotated Planes – 3D

Suppose that we know the stress state of the soil on a particular plane, and we wish to determine the stress state on a different, rotated plane. This problem is equivalent to a transformation of the coordinate system. The components of the Cauchy stress tensor in the rotated coordinate space, \(\hat{\sigma}_{ij}\), can be determined from the stress components in the reference state, \(\sigma_{ij}\), using the rotation matrix \(a\) with components \(a_{ij}\). Note that in soil mechanics, we often represent the shear stress components (i.e., the off-diagonal elements of the stress tensor) as \(\tau_{ij}\) instead of \(\sigma_{ij}\). Furthermore, the prime in \(\hat{\sigma}\) usually denotes effective stress, but is used here to denote stresses in a rotated coordinate system.

$$\hat{\sigma} = a \sigma a^T$$

In matrix form:

\[\left[ \begin{matrix} \hat{\sigma}_{11} & \hat{\sigma}_{12} & \hat{\sigma}_{13} \\ \hat{\sigma}_{21} & \hat{\sigma}_{22} & \hat{\sigma}_{23} \\ \hat{\sigma}_{31} & \hat{\sigma}_{32} & \hat{\sigma}_{33} \\ \end{matrix} \right]=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right]\left[ \begin{matrix} \sigma _{11}^{{}} & \sigma _{12}^{{}} & \sigma _{13}^{{}} \\ \sigma _{21}^{{}} & \sigma _{22}^{{}} & \sigma _{23}^{{}} \\ \sigma _{31}^{{}} & \sigma _{32}^{{}} & \sigma _{33}^{{}} \\ \end{matrix} \right]\left[ \begin{matrix} {{a}_{11}} & {{a}_{21}} & {{a}_{31}} \\ {{a}_{12}} & {{a}_{22}} & {{a}_{32}} \\ {{a}_{13}} & {{a}_{23}} & {{a}_{33}} \\ \end{matrix} \right]\] 2000px-Stress_transformation_3D.svg.png

Figure 2.1.1. Stresses in a reference coordinate system (axes \(x_1\), \(x_2\), \(x_3\)), and rotated coordinate system (axes \(x_1'\), \(x_2'\), \(x_3'\)). https://upload.wikimedia.org/wikipedia/commons/thumb/7/76/Stress_transformation_3D.svg/2000px-Stress_transformation_3D.svg.png

Try it yourself

Note: The \(a\) matrix must be orthogonal (i.e., the axes in the rotated coordinate system must form 90 degree angles with each other)

\(\sigma\)
\(a\)
\(\hat{\sigma}\)
2 0 0
0 1 0
0 0 1

Directly computing components of the \(a\) matrix is not always convenient. If you prefer, you may specify the rotation angles about the \(x_1\), \(x_2\), and \(x_3\) axes (\(\alpha\), \(\beta\), and \(\gamma\), respectively) below to set the \(a\) matrix.

\(\alpha\)deg
\(\beta\)deg
\(\gamma\)deg